

The following contains some example texts from the URZadmin documentation. The chapters were chosen randomly.

Roles

DB tables Description
fct List of known roles (functions), like Rektor, Vorsteher or CV
mfct Assigns roles to persons

The concept of a role, as it is used here, is that of a function a person takes in the organization. It should be distin-
guished from a “technical role” like the administrator within URZadmin or the moderator of a mailing list which are re-
garded, at least in our context, as access rights to an application, i.e. authorizations. Of course, a role may imply ac-
cess rights to some applications, but the two concepts should be clearly separated.

An important function of a role is the display in perssearch: It is a requirement to indicate that a person is the rector of
the university, head of a department, etc. To make this display correctly, we distinguish between the male and female
(and neutral) forms of the role’s name.

Every role has a priority assigned to it. It is represented by a number with lower numerical values meaning a higher
“organizational importance”. When displaying multiple roles of a person, the list will be ordered “high importance first”,
i.e. by increasing numerical values of the priority. In perssearch, the publicly accessible person search of the university,
roles are displayed along with person’s entries when the role priority is not above of 200.

Often, a person holds a role for a certain organization. A head of department is head of a well defined department: he
is the head of department of mathematics and not the head of department of economics. On the other hand, the role of
an assistant may not be bound to an organization, even though an assistant normally works for a well defined institute.
With every role, it can be specified whether it must also be mapped to an organization in addition the role holder.

In order to prevent having several rectors for the university or multiple heads of a department, with every role a maxi-
mal number of occupants per organization is specified. This protects e.g. against forgetting to remove a previous
holder of a role when adding the next successor.

Sometimes, a role is exercised by its holder in close connection with another person. An example is a secretary work-
ing in the legal department for a well specified professor. This professor’s relationship is called “reference person”. Of
course, other uses for this reference person are possible.

A short note may carry additional information like the relation to a research group that has not an organization entry by
itself. This short note has a purely informational character and is not evaluated anywhere.

URZadmin-Example.doc - 1 - 7/19/2007 10:07 PM

fct table
This table lists all roles and their properties.

Column Data Type Description
fID UINT unique record ID
fns CHAR(32) role display name (short form)
fnm CHAR(32) role display name (for men)
fnf CHAR(32) role display name (for women)
fni CHAR(32) role display name (if sex unknown)
fnl CHAR(64) role name (for mail addresses)
fom CHAR(1) is role mapped to an organization? (yes/no)
fx5 CHAR(1) include role in an LDAP (X.500) export? (yes/no)
fpr UINT priority if description of person allows only few roles
fon UINT number of role occupants per organization
for UINT number of role occupants per organization and all sub-organizations
fxc CHAR(16) time of entry creation
fxm CHAR(16) time of last entry modification

mfct table
This table assigns roles to persons.

Column Data Type Description
hID UINT unique record ID
hfi UINT ID of role (maps to fID)
how UINT ID of role occupant (owner)
hoi UINT ID of org
hrp UINT reference person (like a professor for secretaries etc)
hrn CHAR(32) reference number (like Dozenten-Nummer, Vorsteher-Nummer etc)
hds TEXT(32) short note
hed CHAR(16) expiration date
hxc CHAR(16) time of entry creation
hxs UINT entry status

URZadmin-Example.doc - 2 - 7/19/2007 10:07 PM

Provisioned Systems

The accserv daemon

The accserv daemon is the main entry point to every provisioned system. It must be installed as a permanent back-
ground daemon process. It serves as a general gatekeeper (access control) and dispatcher for all requests from the
URZadmin client.

File Description
etc/accserv.cfg The accserv configuration file. It defines clients (sources), services and permissions

(which source has access to what service).A description is given below.
bin/accserv.pl The main executable. Must be started at system startup time.
accserv/<component> accserv components.
logs/accserv.<date>.log Log files

Clients are identified by their IP address or a CIDR range of IP addresses (e.g. 10.157.10.240/28). On daemon start-
up, a list of all configured client IP addresses is built. Any TCP connection sourced by an IP address not on this list will
be immediately dropped.

The services define what kind of managed objects are accommodated at this server. They correspond directly to the
account domains or mail domains within URZadmin. Additionally, the userv service implements the user controlled
services like mail auto-reply. The login and config services are used by publicly accessible computers.

Every service (except userv, login and config) has a name, e.g. IGOR or AuthN. It is implemented by an accserv com-
ponent: The service IGOR is implemented by the UNIX accserv component (or is type UNIX) and the AuthN service is
implemented by the LDAP accserv component (or is type LDAP). Available accserv components are:

Component Description
UNIX Manages accounts and groups on classical (True 64) UNIX machines. Accesses /etc/passwd,

/etc/groups and other central files directly. Cannot use the shadow file.
Linux Manages accounts and groups on Linux machines. It uses the useradd/usermod/userdel utilities and

system calls like getpwent and getpwnam.
LDAP Manages accounts, groups, organizations and other objects in an LDAP directory.
RADIUS Manages accounts in a RADIUS users file.
userv Provide user services like mail auto-forward or SPAM-filter.
login The login service is used when authenticating users of publicly accessible computers.
config The config service is used by publicly accessible computers to obtain information on nearby printers

etc.

It is conceivable that several services are provided on the same server. As an example, a single server could offer
RADIUS accounts, an LDAP directory and local Linux accounts at the same time.

The configuration file etc/accserv.cfg

This identifies our accserv. The default settings are commented out.

Host: MASER
#Port: 12012
#Bind-Address: 10.157.1.5

URZadmin-Example.doc - 3 - 7/19/2007 10:07 PM

Define the directories for the accserv components and configuration files.

Root-Dir: /usr/local/urzadm
Lib_Dir: ${Root-Dir}/lib
Dialog_Dir: ${Root-Dir}/accserv
conf_dir: ${Root-Dir}/etc

Logging configuration: Maximal logging level and location of the log file.

Log levels: 0 fatal error
1 permanent error
2 temporary error
3 warning
4 information
5 protocol
6 trace
7 debugging
8 more debugging
9 logorhoe

Log-Level: 6
Log-Dir: ${Root-Dir}/logs
Log-Owner: 0 0
Log-Mode: 0640

Define the default read timeout (in seconds) that is used when waiting for client input. This value is used only when the
source does no specify an own timeout. The timeout may be changed by clients, but cannot be raised above of
max_timeout.

timeout: 60
max_timeout: 600

Default access for all services

default_access: RO

The service table lists the available services. Included is information on how to invoke the service: the accserv com-
ponent library module and the name of the entry subroutine. The library modules must be located in the directory
specified by the dialog_dir configuration.

Services
list of available services (account domains)

If no Password or "*", then set DefaultAccess to NO!

#Service: Service-Name File EntryPoint DefaultAccess DefaultPassword

Service: MASER unix.pl.lib xs_dialog RO **NeverGuess
Service: PPP radius.pl.lib xs_dialog RO **NeverGuess
Service: mail mail.pl.lib xs_dialog RO **NeverGuess
Service: userv userv.pl.lib xs_dialog RO Never**Guess
Service: RAP unix.pl.lib xs_rap_dialog RO Never**Guess
Service: sts status.pl.lib xs_dialog RO LetMeIn
Service: login login.pl.lib xs_dialog NO Ravenport!!
Service: config config.pl.lib xs_dialog NO AnyTime

URZadmin-Example.doc - 4 - 7/19/2007 10:07 PM

Here is the list of the clients that may use this server. They are identified by their IP address. The source-name is used
in the permission mapping.

Sources: only these hosts may connect to the account server

IP-Address/Mask Source-Name Timeout Description

Source: 10.157.1.20 webmail 90 webmail - IMP access
Source: 10.157.2.32/32 betty 10 Test Workstation
Source: 10.157.1.5 maser 90 URZADMIN Server
Source: 10.157.2.154 petr-test 60 Petr Test fuer Unilogon
Source: 10.157.6.0/24 urz-public 90 URZ DHCP area
Source: 10.157.10.96/27 bioz-public 90 Biozentrum Oeffentliche Rechner
Source: 10.157.10.240/28 bioz-bib 90 Biozentrum Oeffentliche Rechner
Source: 10.157.24/24 pz-public 90 PharmaZentrum Oeffentliche Rechner
Source: 10.157.23.0/27 pz-kiwi-public 90 PharmaZentrum Oeffentliche Rechner
Source: 10.157.23.64/27 pz-guava-public 90 PharmaZentrum Oeffentliche Rechner
Source: 10.157.168.64/27 nursing-public 60 Fuersorgeamt Oeffentliche Rechner
Source: 10.157.209.0/24 ub-public 60 UniBib Public Rechner (UBP sub 209)
Source: 10.157.212.0/24 ub-intern 60 Unibib intern (UB Sub 212)

The permission table defines what source may use what service.

Permissions: what source may do what on services

Access: read only RO, read/write RW, no access NO
login: basic access to authentication server LOGIN

#Permission: Source-Name Service-Name Access Password

Permission: betty MASER RO NoDisclosure??
Permission: betty MASER RW NoDisclosure!!
Permission: maser MASER RW --Delavare
Permission: maser login RW *
Permission: maser * RW *
Permission: petr-test login login No..Question
Permission: pz-public login login Auto::didakt
Permission: pz-kiwi-public login login Auto::didakt
Permission: pz-guava-public login login Auto::didakt
Permission: bioz-public login login Auto::didakt
Permission: ub-public login login Autodidakt::
Permission: ub-intern login login Autodidakt::
Permission: urz-public login login Autodidakt::
Permission: nursing-public login login Autodidakt::
Permission: bioz-bib login login Autodidakt::
Permission: webmail login RO Increase++

URZadmin-Example.doc - 5 - 7/19/2007 10:07 PM

The accserv protocol

The protocol employed between account client and accserv (XCS: Exchange between Client and Server) is a simple
text-based, line oriented protocol. A typical conversation between client and server contains the steps:

1: Client connects to a particular TCP port on the server.
2: Server checks whether this client may connect.
3: Client selects an accserv component.
4: Server dispatches the requested component and sends a confirmation.
5: Client sends a command.
6: Server replies with (optional) command output data and an indication of command success or error.
7: The command/reply cycle may be repeated as often as needed (steps 5 and 6).
8: Client and server drop the TCP connection.

Client Commands
The client may send the following commands:

Command Description
con The con (connect) command selects an accserv component to work with and sends a password to

authenticate the access to the component. This is checked against the password in the etc/accserv.cfg
file. The con command must be issued immediately after the TCP connection was established. Any
other command will be refused at this stage and the connection will be closed. Once an accserv com-
ponent was selected, it cannot be switched to another one within the same TCP connection.

help Print a list of valid commands (Warning: not implemented on some accserv components).
debug Server prints its internal data structures. This is deep magic. (Warning: not implemented on some ac-

cserv components).
verbosity Set verbosity level for progress and debug messages.
timeout Set a read timeout in seconds.
mode The mode command controls two aspects of the connection:

• The flow mode can assume the values “checkpoint” and “stream”. It becomes effective when the
client receives data for several objects. In checkpointing mode, the server appends a J checkpoint
line after each data image for an object, and waits until the client replies with a J continue line.
Only then the next object’s image is sent. The reason for checkpointing is not to overrun the client
with a large volume of data, e.g. when listing the entire content of an LDAP directory. In streaming
mode, all the data is sent as fast as the server gets it and it does not wait for the client. Check-
pointing may conserve the client’s resources, but it slows down the client/server communication to
a high degree. It is better to use spool files on the client side if a high amount of data is expected.

• The data mode has the legal values “sequential”, “indexed” and “keyed”. It is used to select the
format that the server uses to sends its reply data back to client. See the D, I and K server reply
codes below.

The default mode setting is “mode stream sequential”.
data The data command is used to send data images to the server. Images contain object (account, per-

son, organization, etc.) information like login name, a new password or a peson’s organizational
status. After the data command, the server expects any number of image lines, until terminated by a
line containing a single dot “.” (white space may follow the dot). Normally, after a data command, an
operation like modacc or addgrp is issued to process the image data. Several data commands in se-
quence accumulate the data into one image.

modacc
addgrp
lstacc do

Operations like these do the real work on the server. They are accserv component specific. Some
need image data to operate on (e.g. when creating an account), others operate without data (e.g. list-
ing all accounts on a server). The neutral do operation processes the image data and takes the real
operation from each image’s action field.

URZadmin-Example.doc - 6 - 7/19/2007 10:07 PM

quit The communication between client and server is terminated.

Other commands may be added for individual accserv components if needed.

After each client command, the server replies with optional command output (e.g. when a list of objects was requested
or as a confirmation of the account changes made) and a command success status indication. The accserv’s reply may
be interspersed with debugging information, depending on the verbosity level.

Server Replies
The server reply is a sequence of lines. Every line starts with a one character code, followed immediately by a numeric
severity and a colon “:”. Then, data or a text message may follow.

<code><severity>: <message>

The code classifies each line as carrying reply data, informational message or an error/success status. The legal val-
ues of line code are

Code Description
P Progress message. In the web interface, the message may be displayed to the user (depending on current

verbosity settings)
C Debugging message. In the web interface, this message is included in the HTML code as a HTML comment

(<!-- message -->) only.
D Sequential data message. All D line messages for a command are collected in an array data structure

(@srvdata) in the order as they are received without any transformations. D line format is requested by the
“sequential” data mode.

I Indexed data message. The message part has the form key: value. These paires are collected in an asso-
ciative array %srvhash ($srvhash{key} = value). I line format is requested by the “indexed” data mode.

K Keyed data message. The message part has the form ident key: value, where the ident piece identifies
different objects. The data is collected in a nested hash %srvkey of the form $srvkey{ident}{key} = value .
This format is useful when the replies for multiple objects are to be collected in one data structure. K line
format is requested by the “keyed” data mode.

J Checkpoint message. Used with the “mode checkpoint” connection setting. See the description of the flow
mode above.

S Command success indication. This line tells the client that the server finished processing the command and
that no severe errors were encountered.

E Error indication. A severe error was encountered. The connection will be closed immediately.

The severity levels are:

Severity Meaning Description

0 fatal error Error on server, manual intervention necessary
1 permanent error Next try only when database entry changed
2 temporary error Next try any time (E.g. a common file was locked, may be free now)
3 warning Operation on entry done, something was not perfect, but still acceptable.
4 user information All is fine, no complains.
5 protocol Talk between client and server
6 trace Trace program flow
7 debug Debugging
8 more debug More debugging
9 logorhoe Extreme debugging

Normally messages with severity level of 4 or lower should be displayed to the user. Higher level messages are inter-
nal or debugging stuff.

URZadmin-Example.doc - 7 - 7/19/2007 10:07 PM

The protocol is strictly line oriented. Any lines that do not fit the <code><severity>: <message> scheme are interpreted
as protocol error and terminate the client/server connection immediately.

As an example, the full client/server exchange for changing an account’s password is displayed below:

Client: attempts TCP connection to host "ldap1.urz.unibas.ch”, port "12012"
Server: accepts TCP connection
Client: con LDAP password

Server: S6: Hello, maser, what's up (60)

Client: timeout 300

Server: S5: Timeout is "300" seconds

Client: verbosity 90 90

Server: S5: Verbosity level is "90" (msg), "90" (dbg)

Client: mode indexed

Server: S5: Current mode "stream" "indexed".

Client: data

Server: S5: Erwarte Daten gefolgt von PUNKT-Zeile...

Client: !transferid: 1178470275-29461-1
regid: a.18.16586
ref: a.AuthN.zimakn
login: zimakn
hash: ki6lear
ownertype: pers
action: modacc
.

Server: S5: "519" Zeichen erhalten.

Client: modacc

Server: P7: xs_ldap_entry_locate: account "a.AuthN.zimakn": entry found at
 … "uid=zimakn,ou=people,dc=unibas,dc=ch"
P7: xs_ldap_entry_modify: account "a.AuthN.zimakn": replacing attribute "userpassword"
P7: xs_ldap_entry_modify: account "a.AuthN.zimakn": replacing attribute "sambalmpassword"
P7: xs_ldap_entry_modify: account "a.AuthN.zimakn": replacing attribute "sambantpassword"
P7: xs_ldap_entry_modify: account "a.AuthN.zimakn": replacing attribute
 … "unibasChModifyTimestamp" (20070506185116)
P5: update for account "a.AuthN.zimakn" suceeded
P7: xs_process_worklist: severity "5", action status "modify for account
 … "a.AuthN.zimakn" suceeded
I5: !transferid: 1178470275-29461-1
I5: dn: uid=zimakn,ou=people,dc=unibas,dc=ch
I5: enchash: {crypt}qsFWuDl9FUa2.
I5: gidnumber: 1170
I5: login: zimakn
I5: gecos: Nina Zimak
I5: homedir: /users/staff/urz/zimakn
I5: uidnumber: 17292
I5: mailbox: /users/staff/urz/zimakn/Maildir/
I5: shell: /bin/bash
I5: severity: 5
I5: actionstatus: modify for account "a.AuthN.zimakn" suceeded
I5: ref: a.AuthN.zimakn
P7: xs_process_worklist: total severity "5", total success "1"
S5: - 1 objects

Client: quit

Server: S5: Das war's.

Client: closes TCP connection
Server: closes TCP connection

URZadmin-Example.doc - 8 - 7/19/2007 10:07 PM

	Roles
	fct table
	mfct table

	Provisioned Systems
	The accserv daemon
	The configuration file etc/accserv.cfg

	 The accserv protocol
	Client Commands
	Server Replies

